Resistance to fluorodeoxyuridine-induced DNA damage and cytotoxicity correlates with an elevation of deoxyuridine triphosphatase activity and failure to accumulate deoxyuridine triphosphate.

نویسندگان

  • C E Canman
  • T S Lawrence
  • D S Shewach
  • H Y Tang
  • J Maybaum
چکیده

Deoxyuridine triphosphate (dUTP) misincorporation and uracil misrepair have long been implicated in fluoropyrimidine-induced DNA damage; however, the enzymatic activities responsible for these lesions have not been previously identified as critical determinants of overall sensitivity to the antitumor effects of these agents. The purpose of this study was to determine whether differences in uracil misincorporation/misrepair could account for the difference in sensitivity to fluorodeoxyuridine (FdUrd)-induced cytotoxicity and DNA damage in 2 human colorectal tumor cell lines having identical sensitivities to FdUrd-induced thymidylate synthase inhibition. Compared to HT29 cells, SW620 cells were resistant to both cytotoxicity and induction of DNA double-strand breaks, as assessed by pulse field gel electrophoresis. Alkaline elution experiments demonstrated that this resistance coincided with delayed induction of DNA single-strand breaks on parental DNA and, to a lesser extent, on nascent DNA. Following treatment with FdUrd for 24 h, HT29 cells accumulated 904 +/- 273 pmol deoxyuridine triphosphate (dUTP)/10(7) cells, whereas SW620 cells accumulated 20 +/- 7 pmol dUTP. Consistent with this difference in extent of dUTP accumulation was the observation that deoxyuridine triphosphatase levels in SW620 cellular extracts were 4.4-fold higher than in HT29 extracts. The ability to accumulate dUTP, intracellular deoxyuridine triphosphatase activity, and extent of DNA damage appear to be important determinants for predicting the response to FdUrd treatment in these cell lines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resistance to Fluorodeoxyuridine-induced DNA Damage and Cytotoxicity Correlates with an Elevation of Deoxyuridine Triphosphatase Activity and Failure to Accumulate Deoxyuridine Triphosphate1

Deoxyuridine triphosphate (dUTP) misincorporation and uracil misrepair have long been implicated in fluoropyrimidine-induced DNA damage; however, the enzymatic activities responsible for these lesions have not been previously identified as critical determinants of overall sensitivity to the antitumor effects of these agents. The purpose of this study was to determine whether differences in urac...

متن کامل

Induction of resistance to fluorodeoxyuridine cytotoxicity and DNA damage in human tumor cells by expression of Escherichia coli deoxyuridinetriphosphatase.

Recent studies from our laboratory suggested that, in some human colorectal tumor cell lines, sensitivity to fluorodeoxyuridine may depend upon the extent of dUTP accumulation that occurs following drug treatment and that elevation of dUTPase activity might be the basis for some instances of resistance to fluoropyrimidines. To test this model, we expressed Escherichia coli dUTPase in an establi...

متن کامل

Induction of Resistance to Fluorodeoxyuridine Cytotoxicity and DNA Damage in Human Tumor Cells by Expression of Escherichw coli Deoxyuridinetriphosphatase'

Recent studies from our laboratory suggested that, in some human colorectal tumor cell lines, sensitivity to fluorodeoxyuridine may depend upon the extent of dUTP accumulation that occurs following drug treat ment and that elevation of dUTPase activity might be the basis for some instances of resistance to fluoropyrimidines. To test this model, we cx pressed Escherichia coil dUTPase In an estab...

متن کامل

Small interfering RNA-mediated suppression of dUTPase sensitizes cancer cell lines to thymidylate synthase inhibition.

Uracil misincorporation into DNA and its associated misrepair have been implicated as contributing components of cytotoxicity resulting from treatment with thymidylate synthase inhibitors. dUTPase, which eliminates dUTP from the DNA biosynthetic pathway, opposes uracil misincorporation; therefore, elevation of this enzyme in cancer cells may contribute to drug resistance. To validate the potent...

متن کامل

Inhibition of dUTPase induces synthetic lethality with thymidylate synthase-targeted therapies in non-small cell lung cancer.

Chemotherapies that target thymidylate synthase (TS) continue to see considerable clinical expansion in non-small cell lung cancer (NSCLC). One drawback to TS-targeted therapies is drug resistance and subsequent treatment failure. Novel therapeutic and biomarker-driven strategies are urgently needed. The enzyme deoxyuridine triphosphate nucleotidohydrolase (dUTPase) is reported to protect tumor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 53 21  شماره 

صفحات  -

تاریخ انتشار 1993